skip to main content


Search for: All records

Creators/Authors contains: "Liu, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue.

     
    more » « less
    Free, publicly-accessible full text available January 16, 2025
  2. Free, publicly-accessible full text available October 20, 2024
  3. Abstract Background

    Students' tendencies to seek feedback are associated with improved learning. Yet, how soon this association becomes robust enough to make predictions about learning is not fully understood. Such knowledge has strong implications for early identification of students at‐risk for underachievement via digital learning platforms.

    Objectives

    We sought to understand how early in the academic year students' end‐of‐year learning outcomes could be predicted by their performance and feedback‐seeking behaviours within a digital learning platform. We analysed data collected at different time points in the academic year and across different cohorts of students within the context of high school advanced placement (AP) Statistics courses.

    Methods

    High school students enrolled in AP Statistics spanning three academic years between 2017 and 2020 (N = 726;Mage = 16.72 years) completed 3 or 4 homework assignments, each 2 and 3 months apart.

    Results and conclusions

    Across the three cohorts, and even as early as the first assignment, a model consisting of demographic variables (gender, race/ethnicity, parental education), assignment performance, and interaction with the digital score report explained significant variation in students' final course grades (R2 = 0.314–0.412) and AP exam scores (κ = 0.583–0.689). Students' assignment performance was positively associated with end‐of‐year learning outcomes. Students who more frequently checked their digital score reports tended to receive better learning outcomes, though not consistently across cohorts.

    Implications

    These findings further an understanding of how students' early performance and feedback‐seeking behaviours within a digital learning platform predict end‐of‐year learning outcomes.

     
    more » « less
  4. ScAlMgO4 (SAM) is a promising substrate material for group III-nitride semiconductors. SAM has a lower lattice mismatch with III-nitride materials compared to conventionally used sapphire (Al2O3) and silicon substrates. Bulk SAM substrate has the issues of high cost and lack of large area substrates. Utilizing solid-phase epitaxy to transform an amorphous SAM on a sapphire substrate into a crystalline form is a cost-efficient and scalable approach. Amorphous SAM layers were deposited on 0001-oriented Al2O3 by sputtering and crystallized by annealing at a temperature greater than 850 °C. Annealing under suboptimal annealing conditions results in a larger volume fraction of a competing spinel phase (MgAl2O4) exhibiting themselves as crystal facets on the subsequently grown InGaN layers during MOCVD growth. InGaN on SAM layers demonstrated both a higher intensity and emission redshift compared to the co-loaded InGaN on GaN on sapphire samples, providing a promising prospect for achieving efficient longer-wavelength emitters. 
    more » « less
  5. Abstract

    Nitrogen dioxide (NO2) and formaldehyde (HCHO) play vital roles in atmospheric photochemical processes. Their tropospheric vertical column density (TVCD) distributions have been monitored by satellite instruments. Evaluation of these observations is essential for applying these observations to study photochemistry. Assessing satellite products using observations at rural sites, where local emissions are minimal, is particularly useful due in part to the spatial homogeneity of trace gases. In this study, we evaluate OMI and TROPOMI NO2and HCHO TVCDs using multi‐axis differential optical absorption spectroscopy (MAX‐DOAS) measurements at a rural site in the east coast of the Shandong province, China in spring 2018 during the Ozone Photochemistry and Export from China Experiment (OPECE) measurement campaign. On days not affected by local burning, we found generally good agreement of NO2data after using consistent a priori profiles in satellite and MAX‐DOAS retrievals and accounting for low biases in scattering weights in one of the OMI products. In comparison, satellite HCHO products exhibited weaker correlations with MAX‐DOAS data, in contrast to satellite NO2products. However, TROPOMI HCHO products showed significantly better agreement with MAX‐DOAS measurements compared to OMI data. Furthermore, case studies of the vertical profiles measured by MAX‐DOAS on burning days revealed large enhancements of nitrous acid (HONO), NO2, and HCHO in the upper boundary layer, accompanied with considerable variability, particularly in HONO enhancements.

     
    more » « less
  6. Perovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically. We found that fluorinated aniliniums offer interfacial passivation and simultaneously minimize reactivity with perovskites. Using this approach, we report a certified quasi–steady-state power-conversion efficiency of 24.09% for inverted-structure PSCs. In an encapsulated device operating at 85°C and 50% relative humidity, we document a 1560-hourT85at maximum power point under 1-sun illumination. 
    more » « less
    Free, publicly-accessible full text available July 14, 2024
  7. Abstract Background The spatiotemporal variation of observed trace gases (NO 2 , SO 2 , O 3 ) and particulate matter (PM 2.5 , PM 10 ) were investigated over cities of Yangtze River Delta (YRD) region including Nanjing, Hefei, Shanghai and Hangzhou. Furthermore, the characteristics of different pollution episodes, i.e., haze events (visibility < 7 km, relative humidity < 80%, and PM 2.5  > 40 µg/m 3 ) and complex pollution episodes (PM 2.5  > 35 µg/m 3 and O 3  > 160 µg/m 3 ) were studied over the cities of the YRD region. The impact of China clean air action plan on concentration of aerosols and trace gases is examined. The impacts of trans-boundary pollution and different meteorological conditions were also examined. Results The highest annual mean concentrations of PM 2.5 , PM 10 , NO 2 and O 3 were found for 2019 over all the cities. The annual mean concentrations of PM 2.5 , PM 10 , and NO 2 showed continuous declines from 2019 to 2021 due to emission control measures and implementation of the Clean Air Action plan over all the cities of the YRD region. The annual mean O 3 levels showed a decline in 2020 over all the cities of YRD region, which is unprecedented since the beginning of the China’s National environmental monitoring program since 2013. However, a slight increase in annual O 3 was observed in 2021. The highest overall means of PM 2.5 , PM 10 , SO 2 , and NO 2 were observed over Hefei, whereas the highest O 3 levels were found in Nanjing. Despite the strict control measures, PM 2.5 and PM 10 concentrations exceeded the Grade-1 National Ambient Air Quality Standards (NAAQS) and WHO (World Health Organization) guidelines over all the cities of the YRD region. The number of haze days was higher in Hefei and Nanjing, whereas the complex pollution episodes or concurrent occurrence of O 3 and PM 2.5 pollution days were higher in Hangzhou and Shanghai. The in situ data for SO 2 and NO 2 showed strong correlation with Tropospheric Monitoring Instrument (TROPOMI) satellite data. Conclusions Despite the observed reductions in primary pollutants concentrations, the secondary pollutants formation is still a concern for major metropolises. The increase in temperature and lower relative humidity favors the accumulation of O 3 , while low temperature, low wind speeds and lower relative humidity favor the accumulation of primary pollutants. This study depicts different air pollution problems for different cities inside a region. Therefore, there is a dire need to continuous monitoring and analysis of air quality parameters and design city-specific policies and action plans to effectively deal with the metropolitan pollution. 
    more » « less