Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Surface moisture heterogeneity degrades temperature‐humidity (‐) similarity in the atmospheric surface layer, yet the underlying physical mechanisms driving this dissimilarity remain underexplored. This study employs large‐eddy simulations coupled with a land‐surface model to investigate ‐ similarity in the convective boundary layer (CBL) over surfaces with varying scales of surface moisture heterogeneity. Results reveal that as the heterogeneity scale increases, patch‐scale thermally induced circulations develop and interact with cellular turbulent organized structures, significantly altering scalar transport and turbulence dynamics. The patch‐scale thermally induced circulations enhance horizontal advection, modify the production and transport of scalar variances, and lead to a disproportionate increase in the standard deviations of temperature () and humidity (), accompanied by a reduction in ‐ covariance (). As a result, ‐ similarity is substantially reduced throughout the CBL. Spectral analysis reveals that ‐ dissimilarity is most strongly influenced by turbulent motions at scales corresponding to patch lengths. The findings offer insights into the role of surface heterogeneity in shaping scalar similarity in the CBL, with implications for land‐atmosphere interactions and parameterization in numerical models.more » « less
-
Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements.more » « less
-
SUMMARY Taiwan, one of the most active orogenic belts in the world, undergoes orogenic processes that can be elucidated by the doubly vergent wedge model, explaining the extensive island-wide geological deformation. To provide a clearer depiction of its cross-island orogenic architecture, we apply ambient noise tomography across an east–west linear seismic array in central Taiwan, constructing the first high-resolution 2-D shear velocity model of the upper crust in the region. We observe robust fundamental- and higher-mode Rayleigh waves, with the latter being mainly present in the western Coastal Plain. We develop a multimode double-beamforming method to determine local phase velocities across the array between 2- and 5-s periods. For each location, we jointly invert all available fundamental- and higher-mode phase velocities using a Bayesian-based inversion method to obtain a 1-D model. All 1-D models are then combined to form a final 2-D model from the surface to ∼10 km depth. Our newly developed 2-D model clearly delineates major structural boundaries and fault geometries across central Taiwan, thereby corroborating the previously proposed pro-wedge and retro-wedge models while offering insight into regional seismic hazards.more » « less
-
Abstract SN 2023ehl, a normal Type Ia supernova with a typical decline rate, was discovered in the galaxy UGC 11555 and offers valuable insights into the explosion mechanisms of white dwarfs. We present a detailed analysis of SN 2023ehl, including spectroscopic and photometric observations. The supernova exhibits high-velocity features in its ejecta, which are crucial for understanding the physical processes during the explosion. We compared the light curves of SN 2023ehl with other well-observed Type Ia supernovae, finding similarities in their evolution. The line strength ratioR(Siii) was calculated to be 0.17 ± 0.04, indicating a higher photospheric temperature compared to other supernovae. The maximum quasi-bolometric luminosity was determined to be 1.52 × 1043erg s−1, and the synthesized56Ni mass was estimated at 0.77 ± 0.05M⊙. The photospheric velocity atB-band maximum light was measured as 10,150 ± 240 km s−1, classifying SN 2023ehl as a normal velocity Type Ia supernova. Our analysis suggests that SN 2023ehl aligns more with both the gravitationally confined detonation, providing a comprehensive view of the diversity and complexity of Type Ia supernovae.more » « less
-
Novelty and appropriateness are two fundamental components of creativity. However, the way in which novelty and appropriateness are separated at behavioral and neural levels remains poorly understood. In the present study, we aim to distinguish behavioral and neural bases of novelty and appropriateness of creative idea generation. In alignment with two established theories of creative thinking, which respectively, emphasize semantic association and executive control, behavioral results indicate that novelty relies more on associative abilities, while appropriateness relies more on executive functions. Next, employing a connectome predictive modeling (CPM) approach in resting-state fMRI data, we define two functional network-based models—dominated by interactions within the default network and by interactions within the limbic network—that respectively, predict novelty and appropriateness (i.e., cross-brain prediction). Furthermore, the generalizability and specificity of the two functional connectivity patterns are verified in additional resting-state fMRI and task fMRI. Finally, the two functional connectivity patterns, respectively mediate the relationship between semantic association/executive control and novelty/appropriateness. These findings provide global and predictive distinctions between novelty and appropriateness in creative idea generation.more » « less
-
Abstract Nitrogen dioxide (NO2) and formaldehyde (HCHO) play vital roles in atmospheric photochemical processes. Their tropospheric vertical column density (TVCD) distributions have been monitored by satellite instruments. Evaluation of these observations is essential for applying these observations to study photochemistry. Assessing satellite products using observations at rural sites, where local emissions are minimal, is particularly useful due in part to the spatial homogeneity of trace gases. In this study, we evaluate OMI and TROPOMI NO2and HCHO TVCDs using multi‐axis differential optical absorption spectroscopy (MAX‐DOAS) measurements at a rural site in the east coast of the Shandong province, China in spring 2018 during the Ozone Photochemistry and Export from China Experiment (OPECE) measurement campaign. On days not affected by local burning, we found generally good agreement of NO2data after using consistent a priori profiles in satellite and MAX‐DOAS retrievals and accounting for low biases in scattering weights in one of the OMI products. In comparison, satellite HCHO products exhibited weaker correlations with MAX‐DOAS data, in contrast to satellite NO2products. However, TROPOMI HCHO products showed significantly better agreement with MAX‐DOAS measurements compared to OMI data. Furthermore, case studies of the vertical profiles measured by MAX‐DOAS on burning days revealed large enhancements of nitrous acid (HONO), NO2, and HCHO in the upper boundary layer, accompanied with considerable variability, particularly in HONO enhancements.more » « less
-
Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue.more » « less
An official website of the United States government
